Войти в почту

Гидротрансформатор АКПП: все об устройстве и неисправностях

Гидротрансформатор – это далеко не новое изобретение для автомобильной индустрии. Впервые он появился порядка ста лет назад, но за долгое время своего существования устройство претерпело значительные изменения. Сегодня гидротрансформаторы используют для передачи крутящего во многих отраслях промышленности. Разумеется, автомобильная промышленность исключением не стала. Об особенностях устройства гидротрансформаторов, принципе их работы, а также неисправностях вы сможете узнать из материала Avto.pro. Экскурс в историю Прообраз современных гидротрансформаторов был создан еще в 1905 году Германом Феттингером – талантливым немецким инженером, который работал над устройствами для передачи передачи крутящего момента. Свой механизм он назвал гидромуфтой. Изначально его планировалось использовать в судах. Суть работы муфты сводилась к передаче крутящего момента с помощью рециркуляции жидкости, которая заполняла пространство между парой лопастных колес. Такое техническое решение должно было решить проблемы обратной нагрузку на валы, двигатель и их соединительные элементы – жидкость решила бы недостатки жесткой связи между агрегатами и смежными с ними деталями. Первый автомобиль, оснащенный гидротрансформатором, выпустил концерн General Motors. Это была модель Oldsmobile Custom 8 Cruiser 1939 года. Автолюбители отметили, что управление данным автомобилем было очень легким, простым и, разумеется, комфортным. Чуть позже аналогичные устройства начали применять и в других моделях личного транспорта. Сегодня гидротрансформатор является верным спутников автоматических коробок передач. Автолюбители часто называют его «бубликом» из-за специфической геометрии. Достоинства и недостатки Прежде чем мы начнем изучать устройство гидротрансформаторов, давайте разберемся, почему их вообще стали применять. Трансмиссия с жестким соединением первичного вала с двигателем имеет серьезный недостаток: в определенных режимах работы двигателя на трансмиссию приходятся сильные нагрузки, которые становятся причиной ускоренного износа деталей. Трансформатор решил эту проблему. Но у него есть и другие достоинства. Среди них: Обеспечение плавного троганья с места; Потенциальная возможность увеличения крутящего момента от автомобильного двигателя; Устройство практически не нуждается в обслуживании. Где есть достоинства, там есть и недостатки. Главная особенность гидротрансфортматора – передача момента посредством движения жидкости – является и его главным недостатком. Вот почему автоконцерны продолжают работать над его улучшением: Устройство имеет относительно невысокий КПД; Оно пагубно сказывается на динамике автомобиля; Стоимость устройства довольно высока. Так как на раскручивание жидкости в гидротрансформаторе требуется время и мощность, динамика автомобиля может пострадать. Кроме того, проектирование и сборка гидротрансформатора требует больших экспертных мощностей и денежных трат. Автомобиль, оснащенный АКПП с трансформатором стоит дороже моделей с наиболее простой механической трансмиссией. Но с учетом того, что устройтсво не только делает работу трансмиссии более плавной, но и увеличивает ее эксплуатационный ресурс, денежные траты окупаются. Подробнее о принципе работы Принцип работы гидротрансформатора сводится к передаче момента от двигателя к автомобильной трансмиссии без создания жесткой связи. Момент передается посредством рециркуляции жидкости. По сути, работает трансформатор АКПП так же, как и гидравлическая муфта. Но не стоит путать два этих устройства – гидротрансформатор несколько сложнее. Он состоит из таких элементов: Корпус; Насосное колесо / насос; Статор / реактор; Обгонная муфта; Механизм блокировки / плита блокировки; Турбинное колесо / турбина. Если разобрать гидротрансформатор, то можно увидеть следующее: на одной оси размещено турбинное, насосное и реакторное колесо, а весь внутренний объем механизма заполнен трансмиссионной жидкостью. Между каждым из лопастных колес нет жесткого соединения, но оно и не требуется. Насосное колесо имеет жесткое соединение с коленвалом, а значит, при запуске двигателя оно будет проворачиваться вместе с ним. Турбинное колесо имеет жесткое соединение с первичным валом автомобильной АКП. Между этими колесами расположен реактор, иначе называемый статором. Сам же реактор имеет смежный элемент – муфту свободного хода, которая не дает ему вращаться в двух направлениях. Кстати, в обычных гидравлических муфтах, которые часто сравнивают с гидравлическими трансформаторами, статора и муфты нет. Лопасти всех колес имеет особую геометрию, которая позволяет им захватывать как можно больший объем трансмиссионной жидкости. Работает устройство так: при включении двигателя и по ходу повышения оборотов насосное колесо начинает вращаться со все большей скоростью, постепенно раскручивая и жидкость. Так как турбинное колесо имеет схожую геометрию лопастей, оно начнет вращаться, увлекаемое трансмиссионной жидкостью. Выделяется здесь только реактор – он придает жидкости ускорение. Это становится возможным благодаря особой конструкции лопаток. Они имеют специфический профиль с сужающимися межлопаточными каналами. Жидкость, входя в сужающиеся каналы, выбрасывается в сторону выходного вала с увеличенной скоростью. Формирование потока жидкости в гидротрансформаторе напрямую определяется скоростью насосного колеса. Скорость вращения последнего, в свою очередь, зависит от скорости вращения коленчатого вала. Как только лопастные колеса синхронизируется, гидротрансформатор начинает работать как гидромуфта – он не увеличивает крутящий момент. Если же нагрузка на выходной вал увеличивается, турбинное колесо немного замедляется. Реактор (статор) блокируется, начиная трансформировать поток трансмиссионной жидкости. Режимы работы Для полного понимания принципов работы гидротрансформатора стоит уделить внимание режимам его работы. Как стало понятно из предыдущих разделов, этот агрегат передает крутящий момент без жесткого соединения вращающихся деталей. Однако в силу отсутствия такого соединения агрегат имеет несколько недостатков. В частности, уже упомянутые низкий КПД и посредственная динамика автомобиля. Проблемы удалось решить на конструктивном уровне – введением механизма блокировки, иначе называемого блокировочной плитой. У современных гидротрансформаторов есть несколько режимов работы: Блокировка; Проскальзывание. Блокировочная плита соединена с турбинным колесом, а значит, и с первичным валом коробки передач при помощи пружин демпфера крутильных колебаний. Получив команду от блока управления трансмиссией, она прижимает к внутренней поверхности корпуса агрегата под действием давления жидкости. Так как на плите расположены фрикционные накладки, она может обеспечить жесткое соединение и передачу крутящего момента от силового агрегата трансмиссии даже без участия жидкости. Блокировка может включаться на любой из передач. Блокировка гидротрансформатора может быть и частичной. Если плита прижимается к корпусу устройства неполностью, гидротрансформатор переходит в режим проскальзывания. Крутящий момент при этом передаваться как через механизм блокировки, так и через циркулирующую жидкость. В этом режиме автомобиль имеет достойные динамические характеристики, а его трансмиссия продолжает работать плавно. Электроника включает частичную блокировку при разгоне и отключает при понижении скорости. У данного режима есть только один недостаток: частое его включение приводит к истиранию фрикционной накладки плиты. Продукты износа попадают в трансмиссионное масло, что отрицательно сказывается на его рабочих свойствах. Применение гидротрансформаторов Возьмем пример того, когда гидротрансформатор упрощает пользование автомобилем. Предположим, начинается подъем на гору после движения по ровному участку дороги. Водитель забыл о манипуляциях с педалью акселератора. Так как нагрузка на ведущие колеса увеличилась, а автомобиль сбросил скорость, частота вращения турбины должна уменьшиться. При этом уменьшилось гидравлическое сопротивление – скорость циркуляции трансмиссионного масла в гидротрансформаторе увеличилась. Это означает, что крутящий момент, передаваемый валу турбинного колеса, вырос. Водитель обнаружит, что пока лопастные колеса не синхронизировались, автомобиль двигается так, будто произошел переход на низшую передачу, как это делается в автомобилях с механической коробкой передач. Пытливый автолюбитель может обнаружить следующее: крутящий момент может преобразовываться гидротрансформатором слишком большое число раз. Что при этом происходит? Необходимая скорость уже достигнута, однако жидкость продолжает набирать скорость вращения. Здесь на выручку приходит механизм блокировки. Он создает жесткую связь между ведущим и ведомым валом. Блокировка устроена так, что потери мощности будут минимальными. При этом гидротрансформатор не увеличит расход топлива как до, так и после блокировки. Вот еще один вопрос: если гидротрансформатор сам может менять величину крутящего момента, зачем присоединять его к автоматической коробке передач? Дело в том, что коэффициент изменение крутящего момента данного устройства равен 2,0 – 3,5 (обычно 2,4). Это не тот диапазон передаточных чисел, который нужен для эффективной работа автомобильной трансмиссии. К тому же, гидротрансформатор никак не поможет в движении задним ходом или в случаях, когда ведущие колеса разъединены с двигателем. Неисправности гидротрансформаторов Конструкция гидротрансформатора не кажется слишком сложной. Да, каждая деталь устройства спроектирована с учетом того, что к ней будут прилагаться большие нагрузки. Однако учтите тот факт, что в тандеме с трансформатором работает и электроника. Механические и электронные компоненты рано или поздно выходят из строя, причем у разных моделей авто могут быть свои специфические неисправности. Чаще всего автолюбители отмечают следующее: Появление посторонних звуков при работе трансмиссии без приложения нагрузки. Причина: износ опорных или промежуточных подшипников; Появление вибрации на высоких скоростях, реже – во всех режимах работы АКПП. Причина: засоренность масляного фильтра и загрязнение трансмиссионной жидкости; Выход реактора из строя и падение динамике автомобиля. Здесь стоит проверить обгонную муфту; Скрежет, стук гидротрансформатора. Причина: разрушение лопастей; Самопроизвольное переключение ступеней АКПП. Причина: неисправность электронной системы управления; Полный выход трансмиссии из строя. Такое может произойти при обрыве соединения колеса с первичным валом коробки передач. Иногда помогает восстановление шлицевого соединения. Отдельно стоит сказать об опасности перегрева гидротрансформатора. Если автолюбитель игнорировал необходимость замены трансмиссионного масла, трансформатор будет страдать от сухого трения и перегрева. Также стоит уделять внимание остаточному ресурсу фильтра АКПП и чистоте системы охлаждения агрегата. Обычно проблема устраняется заменой расходников, чисткой и заливкой нового масла. В запущенных случаях требуется замена отдельных узлов гидротрансформатора. Общие признаки выхода гидротрансформатора из строя: повышенный расход топлива, рывки при движении на постоянной скорости, а также при торможении двигателем, плохое состояние масла при замене. Как правило, масло в агрегате с изношенным гидротрансформатором имеет черный цвет. Некоторые неисправности могут указывать на поломку других деталей автоматической коробки передач, так что если вы заметили ненормальную работу трансмиссии, скорее обращайтесь к специалисту для диагностики своего авто. Выбор нового агрегата Найти новый гидротрансформатор не так уж сложно. Автолюбителям важно понимать, что при подборе нельзя допускать ошибок – если он выберет неподходящий агрегат, его не получится установить на свой автомобиль. Как результат, устройство нужно будет возвращать продавцу и начинать поиски снова. Чтобы не допустить ошибку, гидротрансформатор обычно ищут по: VIN-коду; Коду имеющегося агрегата. Особняком стоит поиск по параметрам автомобиля. Он не всегда дает точный результат, но если вести поиски в проверенных электронных каталогах, то вероятность ошибки становятся меньше. Необходимо указывать практически все технические параметры транспортного средства – от марки, модели и года выпуска до характеристик двигателя и коробки передач. Отдельно стоит рассказать о ремонте гидротрансформатора. Новое устройство в сборе стоит от 600 до 1000$, а иногда и больше. Ремонт же обходится в среднем в 4-6 раза дешевле. Впрочем, важно учитывать и стоимость снятия коробки передач. Как правило, мастера проводят мойку и дефектовку деталей, меняют уплотнители, гидроцилиндры, фрикционные накладки блокировочной плиты, а также по необходимости балансируют лопаточные колеса. Полный выход гидротрансформатора из строя – это запущенный случай. Автолюбителям достаточно менять расходники и вовремя проводить диагностику. Вывод Гидротрансформатор – это один из важных компонентов автоматических коробок передач, который делает эксплуатацию автомобиля еще более простой и комфортной. В силу относительной простоты устройства и применения деталей с большим эксплуатационным ресурсом, он редко выходит из строя. Но не стоит думать, что довести дело до капитального ремонта будет сложно. Если водитель игнорирует необходимость регулярной замены масла и фильтров, поломка случится в самый неожиданный момент. Впрочем, даже изношенный гидротрансформатор можно отремонтировать. Добиться полного выхода устройства из строя нелегко. Если вы заметили, что трансмиссия начала работать ненормально, мы советуем для начала обратиться к специалисту. Он локализует проблему и выяснит, подлежат ли компонента АКП ремонту. Так как новый гидротрансформатор стоит немалых денег, ремонт будет предпочтительнее.

Гидротрансформатор АКПП: все об устройстве и неисправностях
© Авто.Про