Ещё

Прогнозные IT-решения повысят эффективность и безопасность коммерческого транспорта 

Прогнозные IT-решения повысят эффективность и безопасность коммерческого транспорта
Фото: RUБЕЖ
В цифровую эпоху прогнозы решают все, и речь вовсе не о том, брать ли с собой зонт. IT-решения предикативной или, другими словами, прогнозной аналитики помогают компаниям из самых разных отраслей быстро «заглянуть в будущее», чтобы избежать нежелательных ситуаций и повысить свою эффективность. Они постепенно проникают в нефтегазовый сектор, производственную сферу, торговлю и ритейл, наконец, общественный транспорт. Как считают эксперты, многое из этого стоит перенять и для мониторинга корпоративных автопарков.
Выделяя предикторы
На самом деле, идея такой аналитики стара как мир. Люди всегда стремились просчитать последствия своих действий, предсказать возможную прибыль или, наоборот, потери. В конце концов, что лежит в основе политики, экономики или военной стратегии, как не прогнозы поведенческих моделей, так популярные сегодня в ритейле? Только теперь развитие цифровых технологий привело к появлению многочисленных IT-продуктов и платформ, автоматизирующих и упрощающих эти задачи.
Итак, выражаясь научным языком, предикативная аналитика — это множество методов статистики и цифровой обработки данных для прогноза будущих событий. Одними из первых ласточек стали скоринговые модели для оценки платежеспособности клиента при выдаче банками кредитов. Другой пример — подобные модели в страховании, которые используются при формировании страховой премии. В любом случае, ключевым моментом является определение одного или нескольких предикторов — влияющих на прогнозируемое событие факторов. В автостраховании это возраст водителя, стаж вождение, количество аварий и т.д.
Драйверы роста
Сегодня предикативная аналитика все еще воспринимается как ноу-хау в ряде отраслей, но ее популярность стремительно растет. По данным отчета BusinessInsider, к 2022 году рынок таких приложений вырастет до $20,4 млрд Для сравнения, по итогам 2017-го он достиг всего $4,56 млрд Большинство прогнозов опирается на увеличение потребительского спроса на соответствующие платформы и программные продукты. К слову, бесспорными лидерами среди их разработчиков остаются SAS, IBMи SAP.
При этом ключевым драйвером роста многие называют всеобщий курс на сокращение затрат, автоматизацию и оптимизацию бизнес-процессов. Кроме того, дополнительный стимул к развитию придало распространение так называемых больших данных (Bigdata), что заставляет многие компании искать новые средства обработки информации и увеличивать глубину ее оцифровки.
«Данные технологии уже какое-то время тестируются в ритейле. Из последних тенденций стоит отметить большое количество запросов от производственных предприятий. Им важно сократить объемы брака на производственных линиях, вести автоматизированный контроль безопасности оборудования и работы сотрудников», — рассказал Тимур Мишин, руководитель управление пресейла и прототипирования центра компетенций Больших Данных компании «Техносерв».
Промышленность: обслуживать, не дожидаясь простоев
Сейчас уже никого не удивишь автоматизацией рабочих процессов. SCADA, ERPи другие системы обработки и диспетчеризации данных опутали своими сетями многие современные производства, став незаменимыми рабочими инструментами. И по мнению ряда экспертов, следующим важным шагом будет переход к предикативной аналитике. Ведь в будущем это поможет промышленным предприятиям отойти от закостенелых регламентов, к примеру, в части осмотров и ремонтов оборудования и действовать на опережение. Перефразируя крылатое выражение из фильма «Покровские ворота», «обслуживать, не дожидаясь поломок и простоев».
«Промышленные компании заинтересованы в системах предикативной диагностики оборудования, — считает директор по промышленным решениям . — Хотя многие пока настороженно относятся к подобным решениям. Зачастую принятые нормативы не позволяют радикально менять методики по ремонту и обслуживанию. Однако процесс пересмотра все же начался».
«Промышленники стремятся предсказать отказы оборудования и рассчитать оставшийся срок службы с учетом определенного уровня загрузки, — в свою очередь, подчеркивает технический директор «Цифра» . — Кроме того, такой анализ применятся в целях охраны труда и окружающей среды, обеспечения промышленной безопасности. Еще одно применение — предсказание качества выпускаемой продукции исходя из имеющихся производственных реалий. В целом предсказательная аналитика востребована в тех отраслях, где наблюдается нестабильность и большая вариативность техпроцессов».
Неудивительно, что чаще всего «под прицелом» оказывается критическое оборудование, непосредственно влияющее на выполнение производственного плана. К примеру, в нефтедобыче это погружные перекачивающие насосы, в электроэнергетике — турбины и генераторы и т.д.
К слову, из всех отраслей промышленности локомотивами в части внедрения предикативного анализа в России выступают нефтегазовый сектор, горная добыча и металлургия. Как объясняет ряд экспертов, это связано с тем, что процессные отрасли более активно конкурируют на глобальной арене и, следовательно, быстрее внедряют передовые технологии. Наглядным подтверждением тому служит опыт .
«Мы делаем большую ставку на предикативную аналитику, — рассказывает руководитель центра «Управление корпоративными данными» холдинга. — Мы создали несколько моделей, которые хорошо себя зарекомендовали. Они позволяют поднять эффективность в сравнении с классическим методом управления при помощи панелей мониторинга. Сделанные нами модели в том числе предсказывают вероятность сбоя, который может произойти, а это позволяет оператору установки предпринять превентивные меры. Главная сложность в том, что каждая предикативная модель для той или иной установки разрабатывается индивидуально, ведь она должна учитывать особенности работы конкретного оборудования — температуру внешней среды, давление, режим эксплуатации и другое. Между тем для максимальной точности любой модели нужно огромное количество статистических данных, что не всегда осуществимо. Чтобы собрать статистику отказов, допустим, экструдера, сбой должен произойти десятки, а то и сотни раз. К сожалению, это обойдется неоправданно дорого. Поэтому мы остановились на точности в 85% — на данном этапе этого вполне достаточно».
При этом в перспективе такие прогнозные модели смогут применяться не только к отдельным промышленным установкам, но и к целых предприятиям и техпроцессам. Еще один ожидаемый в будущем тренд — смещение акцентов с красивых графиков и отчетов на автоматизированное принятие решений, другими словами, цифровые советчики.
Ритейл: в центре внимания — рост продаж
Многие эксперты сходятся в том, что пальму первенства по применению прогнозной аналитики все же сохраняют торговля и ритейл. Недаром на вопрос «Какой эффект вы ожидаете от предикативных решений?» самым популярным ответом на последней традиционной встрече членов клуба VentraLabдля руководителей ITоказался «рост продаж». И главными двигателями спроса здесь остаются борьба за качество обслуживания и удержание покупателя, объединение каналов покупок онлайн и оффлайн. В этом контексте наиболее актуально развитие предикативной видеоаналитики.
«Например, благодаря машинному зрению камера будет считывать эмоции покупателей, подходящих к витринам. На основании полученных данных возможно построение статистических моделей, разработка стратегий дальнейшего развития и т.д.», — говорит руководитель направления слаботочных систем компании «КРОК» Иван Царев.
Помимо прогнозирования поведения потребителей и возможности покупки, такие решения могут помочь ритейлерам просчитать спрос на те или иные товары, спланировать поставки и ассортимент на один или несколько сезонов вперед. В частности, крупнейшая сеть оптовой и розничной торговли Walmartуспешно связала онлайн и оффлайн данные. В двух словах, система запрашивает информацию у кассовых терминалов и прогнозирует уровень спроса на различные товары. Управление информацией осуществляется при помощи облачных технологий. В результате была существенно оптимизирована цепочка поставок товаров и стали более четко соблюдаться сроки доставок. Отметить, что подобные решения доступны не только гигантам вроде , но также мелким и средним компаниям при помощи соответствующих технологий от Googleи Adobe.
Транспорт: от общественного к коммерческому
Проникают прогнозные IT-решения и в транспортную сферу. Правда, пока что речь идет, в основном, об общественном транспорте, а главным ориентиром остается безопасность. И здесь ставка, опять же, делается на видеоаналитику.
Например, такая система реализована и успешно применяется на грузовом терминале одного из крупнейших российских аэропортов. Там установлены специальные модули, которые предсказывают возможные переброски предметов или пересечения линий и распознают автомобильные номера. Как показывает статистика, данные модули точны почти на 100%.
Кроме того, предикативные решенияпозволят отслеживать эмоциональное состояние водителей, несущих ответственность за жизни пассажиров. На основании поведенческих стилей будет прогнозироваться дальнейшее развитие ситуации и при необходимости — подаваться сигнал оператору. В итоге это поможет предотвращать аварии и другие инциденты.
«Собственно, такая работа уже давно ведется в сфере мониторинга корпоративного транспорта, — отмечает руководитель отдела клиентской поддержки «СКАУТ-Корпоративные решения» . — Хотя пока значительная часть анализа осуществляются самими операторами на основе полученных от телематики сведений».
Специальные диспетчерские центы получают от системы спутникового контроля автоматические уведомления о превышениях водителями максимально допустимой скорости, авариях, отклонениях от маршрутов, остановках в неположенных местах, срабатывании тревожной кнопки. Наконец, поступают сигналы о слишком резких торможениях и перестроениях и других опасных маневрах. Диспетчеры же быстро реагируют по своему усмотрению: связываются с водителем, чтобы предупредить его об опасности, вызывают на место оперативные службы и т.д. Вдобавок они анализируют полученные сведения и предлагают владельцам коммерческого транспорта меры по повышению его безопасности и эффективности.
«Вполне возможно, что в дальнейшем сложится симбиоз такой диспетчеризации с предикативной аналитикой, и системы смогут не только предупреждать диспетчеров об отклонениях, но и самостоятельно предсказывать дальнейших ход событий. Это поможет операторам быстрее и точнее реагировать на определенные ситуации, что снизит аварийность, — продолжает Мария Воробьева. — Тем более, на сегодняшний день существуют решения по фото— и ведеоконтролю корпоративного транспорта, которые также вписываются в эту модель. Ведь они позволят держать руку на пульсе поведения и эмоционального состояния водителя, а это еще сильнее повысит точность прогнозов».
Как не стать жертвой развода в автосервисе
Комментарии
Читайте также
Новости партнеров
Новости партнеров
Больше видео